Podrobnosti záznamu

Název
    The thermal regime of the crystalline continental crust: Implications from the KTB
Údaj o odpovědnosti
    Christoph Clauser, Peter Giese, Ernst Huenges, Thomas Kohl, Holger Lehmann, Ladislaus Rybach, Jan Šafanda, Helmut Wilhelm, Karla Windloff, Gustav Zoth
Další názvy
    The KTB Deep Drill Hole (Variant.)
Autor
    Clauser, Christoph
    Giese, Peter
    Huenges, Ernst
    Kohl, Thomas
    Lehmann, Holger
    Rybach, Ladislaus
    Šafanda, Jan
    Wilhelm, Helmut
    Windloff, Karla
    Zoth, Gustav
Jazyk
    anglicky
Zdrojový dokument - seriál
    Journal of Geophysical Research
Svazek/č.
    Vol. 102, no. B8
Rok
    1997
Poznámky
    15 obr., 2 tab., 3 s.bibl.
    Zkr. název ser.: J. geophys. Res. (Washington)
Předmětová skupina
    geotermika
    karotáž
    kůra kontinentální
    metabazit
    moldanubikum
    paleoklimatologie
    rula
    saxothuringikum
    tepelný tok
    vlastnosti tepelné
    voda podzemní
    vrt hluboký
    zóna zlomová
Geografické jméno
    Bor (Tachov)
    ČR-Čechy
    Holubov (Český Krumlov)
    Lom u Stříbra (Tachov)
    Pernolec (Tachov)
    SRN-Bayern
    Vítkov (Tachov)
    Zadní Chodov (Tachov)
Klíčové slovo
    Continental
    Crust
    Crystalline
    Implications
    KTB
    Regime
    Thermal
Abstrakt (anglicky)
   An extensive geothermal research program within the German Continental Deep Drilling Program (KTB) covered an almost complete spectrum of experimental and theoretical aspects. The main results and conclusions are as follows: (1) Equilibrium temperature is 118.6°C at 4000 m in the KTB pilot borehole (KTB-VB) and will be around 260°C at 9100 m in the KTB main borehole (KTB-HB). Time required for thermal equilibration of the KTB-HB to within 1% of the intial pertubation will be about 13-16 years. (2) The failure to predict temperature correctly for the KTB was mainly due to an unaccounted pertubation by a transient ground surface temperature history. (3) Pleistocene surface temperature variations affect the present-day crustal temperature between 1.3 to 2.7 K up to a depth of 4000 m. Accordingly, present-day heat flow density is systematically too low down to approximately 1500 m.
   Model simulations indicate that groundwater flow does not eliminate paleoclimatic signals, even through it may translate them to a depth incompatible with both their diffusive age and their amplitude. These results emphasize the importance of an adequate consideration of paleoclimatic effects for the interpretation of thermal data. (4) Lateral heat transport is significant when steep inclination and folding of the rock formations coincide with contrasts in thermal conductivity. This is indicated by typical variations in the vertical components of temperature gradient and heat flow density, such as in the KTB-HB. In contrast, thermally relevant advection of heat is confined to the top 500-1000 m. In the deeper crust, free convection systems require permeabilities greater than 10 -17 m2 for large rock volumes, but simple numerical models indicate that the associated temperature regimes are imcompatible with KTB borehole data.
   (6) Heat production rate shows no systematic variation with depth and is related to lithology at the KTB as in other deep boreholes in crystalline rock. Numerical models using heat production rate derived from seismic velocities yield temperatures compatible with KTB borehole data
Přispěvatel
    Česká geologická služba
Kód přispěvatele
    ČGS (UNM)
Zdrojový formát
    U
Datum vložení
    23. 1. 2008
Datum importu
    8. 8. 2012