Podrobnosti záznamu

    Goldberg-like Decompositions and Voxel Representation of 3D Space
    Kolcun, Alexej
    Modelling 2014 (02.06.2014-06.06.2014 : Rožnov pod Radhoštěm, Česká republika)
Typ dokumentu
Zdrojový dokument - monografie
    Modelling 2014
    S. 57-57
    Autoři celkem: 1
    Rozsah: 1 s. : P
Předmětová kategorie
    3D space
    space decomposition
    voxel representation
Klíčové slovo
Abstrakt (anglicky)
   Space decomposition methods represent an important part of numerical modelling process. Using current methods, creating 3D models is an extremely time-consuming, unreliable, and labour-intensive process. So, when the geometry information is obtained e.g. from computer tomograph or similar devices, i.e. in the form of pixel/voxel grid, it is reasonable to create the space decomposition in the same or similar way. Different raster concept, based on regular hexagonal mesh, is analyzed e.g. in [3]. There are several methods how to decompose 3D space into the set of the same tetrahedra [1], [2], [4]. In the paper the discretization scheme based on Goldberg's one is introduced: we find tetrahedral element which is close to equilateral (regular) one and which can be used as a 3D space filler. Mutual realtionshis betwee voxel decomposition and our approach is presented.
    AV ČR Brno, Ústav geoniky
Kód přispěvatele
    AV ČR, ÚG
Zdrojový formát
Datum importu
    24. 10. 2014