Podrobnosti záznamu

Název
    Properties and simpli fi cations of constitutive time-discretized elastoplastic operators
Autor
    Sysala, Stanislav
Jazyk
    anglicky
Typ dokumentu
    článek v odborném periodiku
Zdrojový dokument - seriál
    ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
Svazek/č.
    Roč. 94, č. 3
Strany
    s. 233-255
Rok
    2014
Poznámky
    Autoři celkem: 1
    Projekt: ED1.1.00/02.0070, GA MŠk3cav_un_auth*0285288
    Rozsah: 23 s. : E
Předmětová kategorie
    convex analysis
    elastoplasticity
    projection, semismoothness
Klíčové slovo
    Cations
    Constitutive
    Elastoplastic
    Fi
    Operators
    Properties
    Simpli
    Time-discretized
Abstrakt (anglicky)
   In the paper, a general constitutive elastoplastic model for associated plasticity is investigated. The model is based on the thermodynamical framework with internal variables and can include basic plastic criteria with a combination of kine- matic hardening and non-linear isotropic h ardening. The corresponding initial val ue constitutive elastoplastic problem is discretized by the implicit Euler method. The discretized one-time-step constitutive pr oblem defines the elastoplastic operator, which is formulated by a simple generalization of a projection onto a convex set. Properties of the so-called generalized projection are used for deriving basic propertie s of the elastoplastic operator like potentiality, monotonicity, Lipschitz continuity and local semismoothness. Further, hardening variables are eliminated from the projective definition of the elastoplastic operators, which yields relations among the models with hardening variables and the perfect plasticity model.
   Also a simplification of the operator for plastic criteria in eigenvalue forms is introduced.
Přispěvatel
    AV ČR Brno, Ústav geoniky
Kód přispěvatele
    AV ČR, ÚG
Zdrojový formát
    U
Datum importu
    24. 10. 2014